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Abstract: Stereospecific synthesis of the title compounds, containing the 

basic carbocyclic skeleton of thapsanes, based on intramolecular 

diazoketone cyclopropanation reaction, is described. 

Recently, a series of thapsanes, both hemiacetalic (11 and open form (2_), 

has been isolated from the Mediterranean umbelliferous plant, Thapsia villosa 

var. minor 1 
---.---. A characteristic of the structure of this new class of sesqui- 

terpenes is the presence of the unique 3a,4,4,7a_tetramethyl cis-hydrindane 

moiety incorporating three contiguous quaternary carbons. Our preliminary 

synthetic investigations towards thapsanes, based on the intramolecular diazo- 

ketone cyclopropanation reaction, resulted in the first stereospecific syn- 

thesis of thaps-7(15)-ene (13) and thaps-6-ene (141, probable biogenetic - - 
precursors2 of these sesquiterpenes containing the basic carbocyclic framework 

thapsane 3, which is the subject of this communication.. 
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Initially, attention was pard to the stereospecific construction of the 

critical tetramethyl cis-hydrindanone 4 containing the requisite three 

contiguous quaternary carbons. The synthetic sequence is depicted in the 

Scheme 1. The starting cyclogeraniol (5) was obtained, in 60% yield, by 

selective ozonation 3 of the B-ionone (51, and direct reduction of the ozonide 

with sodiumborohydride. The ortho ester Claisen rearrangement 4 of the allylic 

alcohol 5 using triethyl orthoacetate in the presence of propionic acid - 
(sealed tube, 180° C, 7 days), followed by base hydrolysis of the resultant 

ester 7a furnished, in 60% yield, the acid E. 
5 Treatment of the acid 

- 

chloride 2, obtained from acid 7b and oxalyl chloride, with excess - 

diazomethane generated the key diazoketone 8. Anhydrous copper sulphate 
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SCHEME 1: (a) i. Ox, -- MeOH, -70’ C; ii. NaBHa, - 
(b) i. ?eC(OEt)3, EtCOOH, sealed tube, 180° C, 
reflux, 8 hr, 62%; (c) i. (COC1J2, C6H6, RT, 6 
cd), anhydrous CuSO4, C6H12, reflux, W-lamp, 4 

NH3 r 30 min, 65%. 

8 _ 

70’ CRT, 5 hr, 60%; 
7 days; ii. 10% aq.NaOH, MeOH, 
hr; ii. CH2N2, Et20, RT, 4 hr; 
hr, 40% from 7J; (e) Li, liq. 

catalysed decomposition 6 of the diazoketone g in cyclohexane (tungstun lamp) 

and intramolecular insertion of the resultant ketocarbene into the 

exomethylene, stereospecifically gave the cyclopropyl ketone 2, a known 

degradation product of the sesquiterpene thujopsene.7’8 Regiospecific 

cleavage of the cyclopropyl ketone 2, using lithium in liquid ammonia 

reduction conditions, furnished cleanly the desired hydrindanone _4 with cis 

ring junction.81g 

Having achieved the synthesis of the ketone 4, demonstrating the 

feasibility of the sequence, it was extended to complete the construction of 

the thapsane. However, further elaboration of 4 posed serious regiochemical 

problems as the two methylenes (Y to carbonyl in 4 are not easily distinguish- _ 

able. To over come this, the sequence was slightly altered and used diazo- 

ethane instead of diazomethane as depicted in the scheme 2. Thus, treatment 

of the acid chloride i’c with excess diazoethane 10 in ether furnished the - 
diazoketone 10. Decompostion of the diazoketone 10 under standard conditions - - 
as described above, provided the cyclopropyl ketone 11, whose structure is 

clearly delineated from its spectral data.8 Regiospecific cleavage of the 

cyclopropyl ketone 11 (Li-liq. NH31 furnished a ketone, for which the thermo- 

dynamically favourable structure 12 was proposed, based on its inertness - 
towards further equilibration conditions. 8,ll Wittig olefination of the 

ketone 12 resulted the thaps-7(15)-ene (13). Isomerisation of the exo cyclic - - 
olefin usrng p-toluene sulfonic acid furnished the thaps-6-ene (14). - 
Structures of the olefins 13 and 14 were established from their spectral data - - 
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- - - 
SCHEME 2: ~-_ (f) MeCHN2, Et20, RT, 4 hr; (g) Anhydrous CuS04, C6H12, reflux, W- 

lamp, 4 hr, 31% from 2; (h) Li, 
tamO- 

liq.NH3, 30 min, 73%; (i) Ph3P+CH3 -BL, 
+K, C6H6, RT, 4 hr, 66%; (j) CH2C12, pTSA, RT, 5 hr, 80%; (k) 70% tBuOOH, 

Cr03, CH2C12, 5 hr, 20%. 

and further confirmation came through the oxidation of 14. Oxidation of the 

olefin 14 using12 t-BuOOH and Cr03 furnished the enone g, which exhibited the - 

IH NMR spectrum identical to that reported1 for the degradation product of the 

thapsane 1. - 

In conclusion, we have reported here a stereospecific synthesis to two 

thapsanes, 13 and 14, using the copper catalysed intramolecular cyclopropana- - 

tion reaction of diazoketones. Currently,this work is being extended towards 

the synthesis of functionalised thapsanes, like & and 2. 
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